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Abstract

The spatial distribution of snow water equivalent (SWE) is modelled as a two parameter
gamma distribution. The parameters of the distribution are dynamical in that they are
functions of the number of accumulation and ablation events and the temporal correla-
tion of accumulation and ablation events. The estimated spatial variability is compared5

to snow course observations from the alpine catchments Norefjell and Aursunden in
Southern Norway. A fixed snow course at Norefjell was measured 26 times during the
snow season, which showed that the spatial coefficient of variation change during the
snow season with a decreasing trend from the start of the accumulation period and a
sharp increase in the ablation period. The gamma distribution with dynamical param-10

eters reproduced the observed spatial statistical features of SWE well both at Norefjell
and Aursunden. Also the shape of simulated spatial distribution of SWE agreed well
with the observed at Norefjell. The temporal correlation tends to be positive for both
accumulation and ablation events. However, at the start of ablation, a better fit be-
tween modelled and observed spatial standard deviation of SWE is obtained by using15

negative correlation between SWE and melt.

1 Introduction

A major cause of severe flooding in Norway is the combination of intense snowmelt
and heavy precipitation. In order to forecast these events, we need reliable forecasts
of precipitation and temperature and a good estimate of the snow reservoir and its20

coverage in the catchment at the time of the forecast. The dynamics of runoff due to
snowmelt, and thus the water balance in the melting season, is very dependent on the
evolution of snow free areas, which again is closely linked to the spatial distribution
of snow water equivalent (SWE) (Pomeroy et al., 2004; Luce et al., 1998; Buttle and
McDonnel, 1987). The shape of the distribution is important in order to describe the25

development of snow free areas in spring. A skewed distribution with high frequencies
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of small values of SWE would produce more snow free areas in response to uniformly
distributed melt than would a more normal distribution of SWE where the highest fre-
quencies are found for higher values of SWE. Increased production of snow free areas
for skewed distributions will occur in cases where the spatial distribution of daily melt
is inversely correlated to the distribution of SWE as reported by Faria et al. (2000).5

Positively skewed distributions like the exponential (Gao and Sorooshian, 1994) and
gamma (Onof et al., 1998; Mackay et al., 2001) have often been favoured for describ-
ing the spatial distribution of daily precipitation. As the accumulated SWE is the sum
of such positively skewed and correlated variables, one would expect the distribution
of SWE to be subject to the central limit theorem (Feller, 1971, p. 258) and being less10

skewed than the distribution of the individual snowfall events. The normal distribution
has often been found to be a good model for describing SWE at its seasonal maximum
(Marchand and Killingtveit, 1999, 2002; Alfnes et al., 2004), which indicates that the
spatial distribution of SWE evolves from a rather skewed distribution at the beginning
of the snow season towards a less skewed, (even normal) distribution at its seasonal15

maximum. The Swedish HBV model (Bergstrøm, 1992; Sælthun, 1996) is used opera-
tionally for flood forecasting at the Norwegian Water Resources and Energy Directorate
(NVE) and has been supplemented with a snow routine developed for use in Norway
which accounts for the development of the snow reservoir and the snow coverage at
different altitude levels (Killingtveit and Sælthun, 1995). This routine is developed un-20

der the assumptions that precipitation as snow is log-normally distributed in space with
a fixed coefficient of variation. Donald et al. (1995) presented a snow accumulation
model where, once the snow coverage was 100%, the spatial variability of SWE re-
mained constant. These static ways of representing the spatial distribution of SWE are
thus in conflict with the central limit theorem, reported observations (Alfnes et al., 2004;25

Pomeroy et al., 2004) and observations presented in this paper.
Skaugen et al. (2004) put forward a formulation for the spatial distribution of snow,

using the fact that when individual snowfall events are gamma distributed, the distribu-
tion of accumulated snowfall events is also gamma distributed with parameters derived
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from the parameterisation of individual snowfall events and the number of accumula-
tions. This model is constrained by assumptions of independence in time, but takes into
account that the statistical features of the spatial distribution of snow water equivalent
(SWE) change during the season, as demonstrated observations. The dynamical as-
pect of the shape of the spatial distribution of SWE is a feature that has to be included5

in the modelling of SWE in order to simulate realistic snow distributions
Observed differences for spatial distributions of SWE at the peak of accumulations

has been addressed to landscape and meteorological features such as vegetation type,
topography and wind (Erickson et al., 2005; Bruland et al., 2004; Alfnes et al., 2004;
Marchand and Killingtveit, 2004; Erxleben et al., 2002; Shook and Gray, 1997). Ac-10

cording to Liston (2004), three mechanisms effective on different spatial scales influ-
ence the snowdepth. Snow-canopy interactions in forested regions are important at
one to hundreds of meters, snow redistribution by wind on tens to hundreds of metres
and orographic influences of precipitation being active on one to a few kilometres. The
latter spatial scale is the relevant scale for describing the spatial distribution of SWE in15

lumped hydrological models such as the operational HBV model. It is the objective of
this study to demonstrate that the spatial distribution of SWE can be adequately mod-
elled as the summation of correlated (in time) daily precipitation (snowfall) fields. The
sources of variability at smaller scales, like snow-canopy interactions and wind drift are,
in this study, not taken into account.20

We want to develop dynamical expressions for the spatial variability of SWE both
for the accumulation and ablation season. We further want to use this information to
assign analytical expressions for the spatial distribution of SWE. The proposed method-
ology will be validated against time series of the spatial distribution of SWE measured
at locations in the mountains in Southern-Norway.25

The next section presents the derivation of expressions for the spatial moments of
SWE, where temporal correlation is taken into account. The moments are then used
for estimating the parameters of the spatial distribution of SWE. The following sec-
tion presents a snow monitoring campaign specially designed for studying the spatial
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distribution of SWE throughout the snow season. In the fourth section the modelled
moments and distributions are tested against observed data and discussed, whereas
conclusions are found in the final section.

2 Modelling the accumulation and ablation of snow as sums of correlated
gamma distributed variables5

When modelling the spatial distribution of SWE, we have to take into account the history
of accumulation and ablation events up to the time of interest. In Skaugen et al. (2004)
this was carried out by modelling the spatial distribution of SWE as sums of identical
independently distributed variables of the two parameter gamma distribution. Here, the
spatial distribution of SWE is also modelled within the framework of the two parameter10

gamma distribution, but, through a simple procedure, the effect of temporal correlation
is introduced.

Let us assume that every snow fall event can be described as a collection of gamma
distributed unit snowfalls y . The unit snowfall y is distributed in space according
to a two-parameter gamma distribution, y=G(ν0, α0), with probability density function15

(PDF):

fα0,ν0
(y) =

1
Γ(ν0)

α
ν0

0 yν0−1e−α0y α0, ν0, y > 0 (1)

where α0 and ν0 are parameters. The mean equals E (y)=ν0/α0 and the variance
equals Var(y)=ν0/α

2
0 . The choice of distribution is motivated partly from studies report-

ing the gamma distribution as a suitable choice of spatial distribution for precipitation20

(Onof et al., 1998; Mackay et al., 2001) and SWE (Kutchment and Gelfan, 1996) and
partly because of the practical mathematical features of the gamma distribution and
the flexibility needed for representing the observed changes in the shape of the spatial
distribution during the snow season. We want to describe the moments of the accumu-
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lated snow reservoirz(t), accumulated at time t, z(t)=
n(t)∑
i=1

yi , where n is the number of

units y accumulated up to the time t. The mean of z(t)is

E (z(t)) =
n∑

i=1

E (yi ) = n
ν0

α0
, (2)

whereas for the variance of z(t) we have to take into account the temporal correlation
of y and we have to consider the covariance matrix of z(t) (see Haan, 1977, p. 56):5

Var(z(t)) =
n(t)∑
i=1

Var(yi ) + 2
∑
i<j

Cov(yi , yj ) (3)

In the following, we assume that the covariance between the units can be de-
scribed as a constant fraction c of the variance, Var(y), of the individual y ’s,
Cov(yi , yj )=cVar(y)=c ν0

α2
0

. The variance of z(t) becomes:

Var(z(t)) = n
ν0

α2
0

+ n(n − 1)c
ν0

α2
0

= n
ν0

α2
0

(1 + (n − 1)c) (4)10

We note that c=
Cov(yi ,yj )

Var(y) is the correlation coefficient, given that yi and yj are identically
distributed and represents the average temporal correlation for all the n units.

We want the spatial distribution of accumulated snow z(t) at all times to be simple
mathematically tractable distribution function, with which we easily can simulate and
perform other exploratory analyses. We thus state that z(t) is distributed as a gamma15

distribution with parameters nνn and αn. This implies that the n elements of the sum
are independent, and identically gamma distributed variables with parameters νn and
αn (see Feller, 1971, p. 47). Let us denote these independent variables as Yi . The
mean and variance of z(t) modelled as a sum of independent variables, Y are:

E (z(t)) = n
νn
αn

(5)20
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and

Var(z(t)) = n
νn
α2
n

(6)

From the mean and variance of z(t) modelled as a sum of dependent variables, y , we
can determine expressions for νn and αn by the mean and variance of z(t) modelled as
a sum of independent variables, Y . From the equating Eqs. (2) and (5), n ν0

α0
=n νn

αn
and5

Eqs. (4) and (6), n ν0

α2
0

(1+(n−1)c)=n νn
α2
n

we can solve for νn and αn and get:

αn =
α0

1 + (n − 1)c
(7)

and

νn =
ν0

1 + (n − 1)c
(8)

We note that the ratios νn
αn

and ν0
α0

are equal, which mean that the mean of the process10

is unaffected by the correlation.

2.1 Adding correlated variables to a sum of independent variables

Let us say at time t′ an additional snowfall of u units of y , have fallen on z(t) giving us
the snow reservoir z(t′),

z(t′) = Y1 + Y2 + .. + Yn + y1 + y2 + .. + yu (9)15

The mean can be estimated straightforwardly as the sum of the individual means:

E (z(t′)) =
n∑

i=1

E (Yi ) +
u∑

i=1

E (yi ) = n
νn
αn

+ u
ν0

α0
(10)

For the variance of z(t′) we must again consider the covariance matrix of Var(z(t′))
and V ar(z(t′)) is the sum of all the elements of the covariance matrix. In Fig. 1 we
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see an example of n=3 and u=2. Given that the Y ’s are uncorrelated, the covariance
elements describing the covariance between the Y ’s are zero and we get the following
expression for the variance z(t′):

Var(z(t′))=
n∑

j=1

Var(Yj )+2
n∑

j=1

u∑
i=1

Cov(Yj , yi )+
u∑

i=1

Var(yi )+2
u−1∑
i=1

u∑
k=i+1

Cov(yi , yk) (11)

We assume also here that Cov(Y, y) can be approximated by Cov(Y, y)=cVar(y)=c ν0

α2
0

,5

and Eq. (11) can be written as:

Var(z(t′)) = n
νn
α2
n

+ u
ν0

α2
0

+ 2nuc
ν0

α2
0

+ u(u − 1)c
ν0

α2
0

(12)

From Eqs. (10) and (12), we can develop expressions for the parameters of the distri-
butions of z(t′) modelled as a sum of n+u independent gamma distributed events with
moments E (z(t′))=n νn+u

αn+u
and Var(z(t′))=n νn+u

α2
n+u

:10

αn+u =
(n + u) νnαn

n νn
α2
n
+ ν0

α2
0

(u + 2nuc + u(u − 1)c)
(13)

and

νn+u =
(n + u)( νnαn

)2

n νn
α2
n
+ ν0

α2
0

(u + 2nuc + u(u − 1)c)
(14)

2.2 Melting events

We can, in a similar way as above, develop the moments for the accumulated SWE15

after a melting event. Let us say at time t′ a melting event takes place and u units of y ,
are melted from z(t) giving us the snow reservoir z(t′),

z(t′) = Y1 + Y2 + .. + Yn − y1 − y2 − .. − yu (15)
1472
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We make here the assumption that the spatial distribution of a unit melt is identical to
that of a unit snowfall. It is difficult to have strong assumptions on the spatial distribu-
tion of snow melt, other than that the ultimate melting event is necessarily identically
distributed as the ultimate SWE. Essery and Pomeroy (2004) assumed a log-normal
distribution of snowmelt from log-normally distributed SWE, a distribution of melt which5

is similar in shape to the gamma distribution. The mean can, as above, be estimated
straightforwardly as the sum of the individual means:

E (z(t′)) =
n∑

i=1

E (Yi ) −
u∑

i=1

E (yi ) =n
νn
αn

− u
ν0

α0
(16)

Figure 2 shows the covariance matrix of Var(z(t′))and we have the following expression
for the variance of z(t′):10

Var(z(t′)) =
n∑

j=1

Var(Yj ) − 2
n∑

j=1

u∑
i=1

Cov(Yj , yi )+
u∑

i=1

Var(yi ) + 2
u−1∑
i=1

u∑
k=i+1

Cov(yi , yk) (17)

We get negative and positive covariance contributions from the melting event. The neg-
ative contributions come from when the melting event is correlated to the snow reser-
voir prior to the melting. A melting unit correlated with a melting unit gives a positive
contribution. Also here we make the assumption that Cov(Y, y)can be approximated by15

Cov(Y, y)=cVar(y)=c ν0

α2
0

, and Eq. (17) can be written as:

Var(z(t′)) = n
ν
α2

+ u
ν0

α2
0

− 2nuc
ν0

α2
0

+ u(u − 1)c
ν0

α2
0

(18)

From Eqs. (16) and (18), we can develop expressions for the parameters of the distri-
butions of z(t′) modelled as n−u independent gamma distributed events:

αn−u =
(n − u) νnαn

n νn
α2
n
+ ν0

α2
0

(u − 2nuc + u(u − 1)c)
(19)20
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and

νn−u =
(n − u)( νnαn

)2

n νn
α2
n
+ ν0

α2
0

(u − 2nuc + u(u − 1)c)
(20)

3 Snow course data from Norefjell – Southern Norway

During the EU project Envisnow, montoring of the spatial distribution of SWE during the
snow season was performed at Norefjell (60◦15′ N, 9◦30′ E) located in southern Norway5

110 km north-east of Oslo (see Fig. 3). The motivation for the monitoring campaign was
to study the possible change in features of the spatial distribution of SWE trough the
snow season. The snow monitoring campaign was carried out doing snow surveys
every second week in the accumulation season and every week during the melting
season. The route was fixed (by GPS) for the 2 km long snow course and snow depth10

was measured every 10 m. Snow density was measured twice during the snow course
at locations of the mean snow depth. The snow course route is located at 1100 m a.s.l.
and is above the tree line. 17 one-day campaigns between November 2002 and June
2003, and 9 campaigns between October 2003 and February 2004 were carried out.
The latter part of the monitoring period also includes the start of the accumulation15

period, whereas the former started when there were already 200 mm of SWE present.
Figure 4 shows the time series of the mean, standard deviation and coefficient of

variation (CV) of SWE for the snow course data. We can note that the CV (see Octo-
ber 2003) is relatively high at the start of the accumulation season, decreases during
the accumulation season, and rises sharply during the melting season. As the mean20

SWE and the standard deviation both decrease during the melting season, the increas-
ing CV implies that the rate of change (decrease) of the mean is much higher than for
the standard deviation. This feature of the spatial standard deviation of SWE was also
noted by Pomeroy et al. (2004), who found that the otherwise strong association be-
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tween mean SWE and standard deviation was not evident during melt. During melt, the
mean SWE declined whereas the standard deviation increased or remained constant.

4 Results and discussion

The dynamical parameters α and ν of the two parameter gamma distribution was cal-
culated for each point of observation of SWE, taking into account accumulation and5

ablation events by using the Eqs. (13) and (14), or (19) and (20), respectively. The ini-
tial parameters α0 and ν0 were estimated from the daily mean (m=5.86 mm) and stan-
dard deviation (s=7.57 mm) of precipitation data (zero values was excluded) trough the
relations α0=m/s

2
and ν0=m2/s2. The precipitation station is located 18 km south of

the snow course site and at 367 m a.s.l. The correlation coefficient c was tuned in10

order to get an optimal fit as measured by the Nash and Sutcliffe coefficient of effi-
ciency R2 (Nash and Sutcliffe, 1970). The estimated time series of standard deviation
and CV of SWE is also compared to that estimated by the traditional snow routine of
the HBV models which uses a lognormal distribution with a fixed CV (optimized by the
R2 criterion). Figure 5 shows observed and estimated (by the proposed model and15

by HBV) values of the spatial standard deviation of SWE and Fig. 6 shows observed
and estimated CV. The R2 value for the estimate of the spatial standard deviation was
R2=0.86 for the new model, and R2=0.32 for the snow routine of the HBV model. The
new model is thus a considerable improvement to the lognormal distribution with a fixed
CV. The observed values do indeed show that the spatial distribution of SWE changes20

through the season, and the proposed model capture these changes well. Figure 7
shows the agreement between the gamma CDFs (1000 values are simulated) based
on the estimated values of α and ν and the empirical CDFs from the observations for
the dates 18 March 2003 and 28 May 2003, confirming that a representative model for
the spatial distribution of SWE is developed.25

The values for α0 and ν0 were estimated from the mean and the standard deviation
of days with precipitation from the time series of a single precipitation station. As α0
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and ν0 is assumed to represent the parameters of the spatial distribution of a unit of
snowfall, estimating the values from a single time series implies an ergodic precipi-
tation process where the spatial and the temporal distribution is equal. Whereas no
rigorous study of ergodicity for this area was undertaken, it is interesting to note that
the estimated values we obtained for α0 and ν0 gave good results. The values of α0 and5

ν0 were varied while keeping a constant mean (E (y)= ν0
α0
=const) and no improvements

in the estimation of the spatial standard deviation of SWE were observed.
The optimal values for c in the Norefjell data was c=0.019. Using different values

of c for accumulation and ablation events were tried and, for this location, improve-
ments of R2 were found. When using c=0.01 on ablation events, we obtained R2=0.9.10

Studies of temporal correlation of precipitation, both for a fixed coordinate system and
from a coordinate system that moves with the storm, show a rapidly declining correla-
tion function which approaches zero after approximately two hours (Zawadski, 1973).
As the parameter c represents a temporal average over the total number of events,
it is thus not strange that the values obtained in this study are small. The effect of15

correlation, however, is significant, in that we would otherwise have a steadily increas-
ing spatial variance as both summation and subtraction increases the variance (Haan,
1977). It is interesting to note that also the correlation between ablation events and
SWE prior to melting turns out to be positive. Similar findings are reported by Pomeroy
et al. (2004) who found positive correlation on the catchment scale (>10 km2). For the20

particular study of Pomeroy et al. (2004), negative correlations between pre-melt SWE
and melt where found for scales smaller than the catchment scale. Positive correlation
is explained by the presence of landscape classes (shrub tundra) receiving more snow
due to redistribution processes and the possibility of increased melt rate for areas with
exposed shrub due to reduced albedo and enhanced aerodynamic roughness. We25

investigated the effects of varying the sign of the correlation coefficient c in Eq. (17)
for ablation and for different phases of the ablation process. A negative correlation
between melt and pre-melt SWE resulted in a steadily increasing standard deviation
during the melting period and was thus not consistent with the observations. Negative
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correlation at the beginning of the melting period and positive towards the end im-
proved the fit between modelled and observed standard deviation of SWE (R2=0.92)
(see Fig. 8) and we note that the increase in standard deviation seen at the start of
the melting season (see Fig. 8 when the mean SWE starts to decrease) is now well
estimated due to negative correlation. A possible reason for an initial negative correla-5

tion can be the smaller demand of energy needed by shallow snow packs to reach an
isothermal state and the maximum amount of retainable melt water in the snow pack.
Melting will thus take place earlier for these shallow snow packs. The positive correla-
tion is harder to explain if one does not take into account dominating landscape classes
that favour both accumulation and increased melt rate. Such landscape classes are not10

present at the Norefjell snow course, where there are some 30–40 m of low-growing
willow thicket (<60 cm) and otherwise no vegetation besides grass. Maybe the positive
correlation becomes appropriate only towards the end of the ablation season, when the
entire snow pack is mature and producing melt. At this stage, SWE starts to be a lim-
iting factor and more melt water is generated from larger snow packs simply because15

more SWE is available for melting.
In order to investigate whether the method could be applied also to other locations

than Norefjell we tested if the spatial variability of SWE could be reproduce at an alpine
catchments at Aursunden in the northern part of Southern Norway (see Fig. 1). Snow
course measurements was carried out at Aursunden (930 m a.s.l.) three times during20

April and May in 2002 (see Alfnes et al., 2004). Again, the route was fixed by GPS for
the 1 km long snow course and snow depth was measured every 10 meters. The pa-
rameters α0 and ν0 were estimated in the same manner as above from the daily mean,
m=3.31 mm, and daily standard deviation, s=4.08 mm, (zero events excluded) of pre-
cipitation measured at a precipitation station (685 m a.s.l.) located 10 km southeast25

of the snow course. The correlation coefficient was tuned to the values of observed
spatial standard deviation. Also here the best fit was obtained with using different val-
ues of c for ablation (c=0.12) and accumulation (c=0.14) events. Figure 9 shows the
good agreement between observed and modelled spatial standard deviation and CV.
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The correlation coefficient and the temporal standard deviation of precipitation take on
quite different values at Norefjell and Aursunden. Although the observations points are
too few to make strong inferences it does seem reasonable that we find low temporal
correlation with relatively high temporal variability of precipitation. The same effect of
high spatial variability and short spatial correlation lengths is observed in the spatial5

domain for precipitation (Skaugen, 1997).

5 Conclusions

A model for the spatial distribution of SWE has been put forward. At all times the spatial
distribution of SWE can be expressed as a two parameter gamma distribution where
the parameters are functions of the mean and variability of observed precipitation, the10

number of accumulation and ablation events and of temporal correlation.
The observed time series of SWE confirms that the spatial distribution of SWE do

change trough the snow season with initially high CV, which decreases during the
accumulation season and increases in the melting season. These features, as well as
the shape of spatial distributions of SWE, are well reproduced by the proposed model.15

The new model clearly represents the spatial distribution of SWE more realistically
than the log-normal distribution with a fixed CV which is traditionally used in the HBV
model in the Nordic countries. The model provides good estimates of the spatial vari-
ability of SWE at two alpine locations in Southern Norway.

Analysis of the correlations between pre melt SWE and melt suggests that correlation20

is negative in the early stages of the ablation process and positive at later stages.
Positive correlation between SWE and melt at the end of the ablation proved, within the
model framework, to be necessary in order to model the decrease in spatial variability
observed in the snow course data.
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Fig. 1. Correlation matrix of the sum of uncorrelated and correlated variables. The Y s are
uncorrelated and the ys are correlated.
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Fig. 2. Correlation matrix of the sum and difference of uncorrelated and correlated variables.
The Y s are uncorrelated and the ys are correlated.
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Fig. 3. Locations of snow monitoring campaigns at Norefjell and Aursunden, Southern Norway.
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Fig. 4. Observed spatial mean (solid line), spatial standard deviation (long dashed line) and
CV (short dashed line) of SWE at Norefjell.
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Fig. 5. Observed (solid line) and estimated spatial standard deviation at Norefjell. Long dashed
line represents estimates by the new model and short dashed line represents estimates by the
snow routine of the HBV-model.
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Fig. 6. Observed (black triangles) and estimated CV at Norefjell. Open circles represent es-
timates by the new model and black circles represent estimates by the snow routine of the
HBV-model (fixed CV value).
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 Fig. 7. Observed and simulated spatial CDF of SWE at near snow maximum (18 March, and

late spring (28 May) at Norefjell. Solid lines are observed values (thick line at 18 March), and
dashed lines are simulated (long dashed lines at 18 March).
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 Fig. 8. Observed and estimated spatial standard deviation of SWE at Norefjell. The standard

deviation is modelled with negative correlation at the start of the ablation period, and positive
towards the end of the ablation.
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 Fig. 9. Observed and estimated values of standard deviation and CV at Aursunden for the

weeks 15, 18, 21 in 2002. Observed values of standard deviation and CV are represented by
solid line and black triangles. Estimated values of standard deviation and CV are represented
by long dashed line and open circles.
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